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Bayes and Equivariant Estimators of the Variance of a Finite Populgtion

By

S. Zacks gnd H. Solomon

O. Introduction.

Let XyseeesX be the values of a variable x that measures a

N
characteristic in a finite population of N elements., Let

N
1 2 1 . 2
(0.1) b=F L% » CTN=N.Z (kg -1)"
i=1
be the population mean and variance of the measurements. In the present
paper the problem of estimating 0%- on the basis of a sample Xl""’Xn’

2 <n <N, from the population is studied. The commonly used estimator

is the 1 iance 0 = - n'(x %)%, wn £ -LSx i th
is sample veriance G, = —= izﬁ 37X )" ere X == .§i ; 1s the

. k2, . . N 2
sample mean. It is well known that 0, is an unbliased estimator of FT O

under simple random sampling.

In the present study the "unbiased" estimator §§ is replaced by
Srfl = :;Ll- Ejl (xi-}?n)2, which is called the "classical" estimator. The two
estimat;;s are nearly equivalent if the sample size is not trivially small.
The "classical” estimator does not utilize any prior information on 02 that
may be often available. There are many examples of repetitive sampling
surveys, in agricultursal or indusfrial areas, in which good information is
available on the distfibution of the seasonal or yearly yield (production)
of a certain commodity. Samples may be taken during the season to observe
the distribution of related characteristics that may improve the forecasting
of a population value. ZEstimates of the variance in the population could be
adjusted adaptively in order to imporve the prediction (confidence) intervals

for population parameters.



In this paper we show how such prior information on the mean and
variance of the population can be ubilized to adjust the "eclassical"
estimator. Specifically, by utilizing the special structure of the sample
survey theoretical model and of the likelihood function we derive the
general form of Bayes and Bayes Equivariant estimators. It is shown

that for any prior distribution, H, of independent identically distri-

buted warigbles KyseeesXyp having a prior mean Ho and prior variance
Ug, the Bayes estimator of o° foy squared-error loss is (approximately)
(0.2) -

n Dyvr 2 . n == 2
= + -2 n -
B~ I %y @ N)[O'O + T (Xn “O) 1.

Estimator (0.2) does not depend on the sampling procedure. This Bayes
estimator is a weighted average of the "classical" estimator, Gi, based on
the observed sample and the Bayes estimator of the "within" variance in the
unobserved portion of the population and the estimator of the variance
between the means of the observed and unobserved portions of the population.
The estimator (0.2) could well be found very meaningful and good also in a non-
Bayesian sense by considering k, and Ug ‘as proper estimates (or quesses) of

the mean and variance of the unobserved part of the population.

Equivariant estimators of the variance U§ are considered with respect
to the group ,ﬂ of real affine transformations on the parameter space %(N)
of (xl,...,xN). It is shown that every equivariant estimator of G; can be
expressed in the general form Giw(gn), where W(En) is a proper function
of the maximal invariant statistic, which is the vector of standardized

sample values, Bayes equivariant estimators are studied, with respect to

A
the quadratic loss function L(UiW(En)UE) = (giW(En)-Ui)g/gi' Tn contrast



to the case of determining Bayes estimators, the form of the Bayes equivariant
estimator depends strongly on the particular prior distribution specified

for Xx.,...,x

1 For example, it is shown that

N

AD 2 2 1
(0.3) Sap = a1 - 2 =80 Aol

is the Bayes equivariant estimator for prior normal i.i.d. variables,
regardless of their prior mean and variance. The agbove formulsa (0.3)
is relatively simple. It depends only on 'Bi and does not depend on
Yo This is not always the case, as shown by Zacks [16] in the case of

exponentially distributed i.i.d. variates.

In Section 1 we introduce the sample survey model and discuss sample
statistics and likelihood functions. The Bayesian approach extending the
sample survey model is discussed in Section 2., Sections 3 and 4t define and
analyze equivariant estimators, Bayesian concepts and loss functions.
Bayesian measures of relative efficiency are introduced in Section 5.

We provide a numerical example in which fifty populations of size N = 100
were simulated from an exponential distribution. From each such popula-
tion a sample of size n = 10 was drawn and the estimators Gi and 3;

were computed. It is interesting to observe the extent to which the

Bayes estimator 32

B is more effective than the classical estimator Gi

in small samples. Estimate of their Bayes relative efficiency is provided
in that example. General efficiency analysis is provided for prior normal
distributions. It is shown that the classical estimator is considerably
less efficient than the Bayes estimator. Some sensitivity analysis is
performed to study the effects of erroneous priof parameters on the

relative efficiency.



There are only a few published papers on thé Bayesian estimation of the
variance of a finite population. Tiu [9] considered unbiased estimators
of G; under various possible sampling designs. Since the sampling
variance of these estimators depends on the population values xl,...,XN,
Liu considered the Bayes risk of these estimators. He derived a lower
bound to the Bayes risk function and thus showed the opfimality of the
Horwitz-Thompson type estimator, under certain conditions. We remark
that Liu's study is not really a Bayesian study, since proper Bayes
estimators are independent of the sampling design and are generally
not unbiased. Royall [10], [11] and Royall and Cumberland [12] studied
the problem of developing confidence intervals of the population

variance by regression estimates. We cannot compare their results

with ours since the problems are different and so are the approaches.

2. Foundations.

Consider a finite population of size N whose units have values
(real finite) Xpseee;Xy. According to the modern theory of sampling
surveys (see Godambe [5,6,7], Basu [2] and others) the population vector

Xy = (xl,...,xN) is coneidered a parametric point in a parameter space

%(N), which belongs to the Fuclidean N-space. In the present paper a

sample, s, of size n, 1 <n <N, designates a subvector of Xy

consisting of n components 8 =< Xs seee Xy
1 n

ij € {1,2,...,8} for all j =1,...,N. A sampling procedure is a plan

>, where

according to which the components of §N are chosen. In a non=-Bayesian

theory of sampling surveys one has to introduce probability functions



P(g) on the sample space, ,ﬁ, of all possible samples, in order to
discuss random samples. In a Bayesian theory the parametric vector
Xy is considered a random vector having a prior joint distribution
H(§N) on %(N). According to this approach, the population vector,
?E,N’ »
(like in a Monte Carlo procedure) according to H(?SN) According to

is a realization of a sample from a "superpopulation", generated

this approach, given amy sample 5 =< xil,...,xin>, the joint prior
distribution of s can be derived from H(§N) and the posterior joint
distribution of §§-n =< xv; v ¢ 8> and is independent of the sampling
probability function P(s), vhich is immaterial for a Bayesian analysis
(see Solomon and Zacks (1970)). For this reason we will assume in what
follows, without loss of generality, that the sample consists of the
subvector x = (xl,...,xn) and Jéi\;_n = (Xn+l""’x'1\T)' If XyseeesXy
are assumed to be priorly independent and identically distributed then
any sample s can be considered a simple random sample from H, as
in the classical model of inference.

The estimation problem is that of estimating a specified parametric

function 9(}’5N) of the population vector ( e.g. the population mean,

variance, etc. ).

S Estimators of the Population Variance.

5.1 General Structure.

Let X, = (xl,...,xn) be an observed Sampleo Designate by

the sample mean and the sample variance, respectively; where

n
Y x. and 3 - (x, =x )2 .
=1

- 1
X = =
n 1 n

s+

pev s

L n



If SZ;\; n and 'r; n designate the mean and variance of the N-n units

not in the sample then the population variance is

G.1) o) =2-8+a-BE _+2a-DER

)2
n n N-n

Formula (3.1) can be verified since total variance may be written as
the average of the conditional variances plus the variance of the condi-
tional expectations.

Estimators of the population variance are sample statistics with range

in (0,o). The most common estimators in use are the sample variance

. A
'0\-121 or the "unbiased estimator" S'i = Hx—_lfl&i. Formula (3.1)

shows. that, regardless of the sampling procedure, a proper estimator of

2 . . . . v 2 =%
o (5\]) .can be obtained by substlfu‘clng estimators  of . TN_n and X'N-n in
(5.771_). The "unbiased" estimator 'c‘ri can be obtained from (3.1) by

. . =% = 2 _ . n , N-ntl a2 .
substituting xN-n =X, and ’L’Nﬁn = o3 -———‘ o1 o, e As will be shown

in Section 4, Bayes estimators of 02 (§N) can be obtained

by substituting corresponding Bayes estimators for 'r; and El\?n
=] -

in (3.1).

3.2 Equivariant Estimators.

Following Fraser [L] we willdenote by [®,B], with -0 <Q < o
and B # 0, a real affine transformation, i.e. [0,Plx = +fx. Let B
denote the group of all such transformations. We define [a,B]§N=(yl,... ,yN) s
where vi= [G,B]§i, i=1l,...,N. Every element of ﬁ transforms Q’(N) into ‘J{(N)
in a 1:1 fashion. Let E be the group of transformations on 'the rarameter

space of o= (}51\1) induced by the elements of )“' That is, if



2 22 2 . 0/
[a,5]§N =yy then o (ZN) = pf o (§N) where B~ is the element ofzj corres-
ponding to [Q,B] of G. An estimator cg(gn) is called equivariant

with respect to G if, for every [0,B] ¢ §
2 2
(3.2) 3‘([a,8]§n) = 623 (§n) R X € %(n) .

2 . . .
The sample variance Gn is equivariant with respect to )‘. The

statistic

= [~ fE _i]
- 5 ° A "Zn
o

is maximgl invariant with respect to )&. Thus, every equivariant estimator

of 02(§N) can be expressed in the form
A2 2
(3.3) 5y (3,) = 0¥ (@)

where w(gn) is a proper positive function of the maximal invariant
statistic un‘. For further reading on invariance structures for

sampling from finite populations see Chaudhuri [3].

4. Bayes and Bayes Equivariant Estimators.

4.1 Bayes Estimators.

Let H(§N) be a prior distribution in a specified family HH. Let
2
L(6 ,02) denote a loss function associated with estimating 02(§N) by

A2 . AL . .
(3 (§n). An estimator GH(§n) is Bayes with respect to H(§N) and

L(Gg,cg) if it minimizes the prior risk function
2
(.1) R(3°,H) = J‘ L (x,),0” () M () -
~TL NN ~

7



The following is a general result for the squared-error loss
funection:
Ir Xl""’XN are i.i.d. random variables having any prior

distribution H(x) with a finite prior variance, 02

0’ then the

Bayes estimator of 02(§N) is

A2 n A2 N, 2 n - 2
(k.2) op = o, * 1 - N)[U* 5 (xn-uo) 1,

where oi = cg(l - %) and My is the prior expectation.
The proof of (4.2) proceeds as follows. The Bayes estimator of
02<§N), given X for the squared-error loss function is the posterior

expectation of (3.1). Furthermore, since the components of x

are
~N

priorly independent

2 : 2 _ N-n-1 2
(+.3) By yenl %) = Belmy) = o 96
for any prior distribution H, having variance Ug. Moreover,
2
o
= % 2 - 2 0
(k) EH{(Xn-XN-n) |}'Sn} = (Xn-“O) =

Substituting these expressions in (3.1) one obtains (4.2). In
many situations it is not unreasoﬁable to assume that Xl,...,XN are
,priorly i.i.d. Hence, formula (4.2) is a very general formula, since
1t does not depend on the form of H(x), but only on the prior mean

and variance. These values may be known from previous experience.



L.2 Bayes Equivariant Estimators.

Consider the structure of Bayes equivariant estimators. We have

[

ar = [- ]

2

a> |1

®
X
~“N-n

B
a>

n

* * . . : .
where Xen = (Xn+l’°"’X1\T) and EN-n 1s maximal invariant with respect to

2 . *
;@. Let VN-n and Von be the mean and the variance of UNon® One can

express the population variance -in #hese terms in the form

(4. 5) o (xy) = 3121[% * Q- ﬁ') (Wl%r-n * 1% vl%-n)] )

Thus, comparing (3.3) and (4.5), the Y-function of an equivariant
estimator should be chosen to estimate the funetion

2
(4. 6) : D(Wft-n’vN-n) = % + (l-%)(wg_n + IN-l vi_n) .

Let L(¥,D) be a loss function for the estimati 2 2
’ imation of D(WN-n’VN-n) by
V() . LKD) is invariant with respect to H. Let G(y,ur ) be

a prior distribution induced by H(?\‘,N)' The prior risk associated with

¥ and G is

(4.7) R(V,G) = jL(ﬂr(gn),D(w;_n:Vﬁ_n))dG(En’Ef\re-n) :

y A2 .
An estimator O V(4 ) is called Bayes equivariant if Vo minimizes (4.7).
Notice that the criterion of miﬁimizing (4.7) is the same as minimizing
‘ 2
the Bayes risk for the quadratic loss L(5,c§) = (é\-oﬁ) /3?1, where

A Al
e =o.v(w ).



In many applications it would be reasonable to assume that the family *}

of prior distributions is a family with location and scale parameters. In

other words, assume that all the prior distributions of “H are of the form

XMy XMy Ry Ho
H( o J o PRI o ) >
0 0 0

where -0 < Ho < o and O < Ty < o, In this case the Bayes equivariant

estimator depends only on the general form of H(Xl""’XN)° Indeed, : the
. . . * . . . .
distribution G(En’EN—n) is the same for all Ho and % of distributions
in ?}.
Equivariant estimators in the strict sense were defined as those of

the form Gﬁy(gn). The Bayes estimator A2 (4.2) is thus not strictly

B

equivariant. However, if x_ 1is transformed to [a,6]§N the prior

~N
parameters (po,co) should be transformed to [G,B](po,cb) = Gl+5po,|5|co)-

Let G%“O - )(xn) denote the Bayes estimator 4%; with the prior parameters
, ]
0
. A
by and oy, respectively. Then 52 (x_) is generalized equivariant in
(}ioJ GO ) ~n

the sense that

A2

p 2a2
[CX’B] (“O’UO

(+.8) \([o,p1x,) = £%67

uo)o-o ) (}'E'n) ?

for all =0 <O < w, 0 <P <w; and all x

X Furthermore, the Bayes

. A2 . .
estimator o (x.) 1is also Bayes in the class of all generalized
(HO,O-O) ~1

. . . . . A 2.2,k
equivariant estimabtors with respect to the quadratic loss (G-GN) /Un.

10



4.3 Examples of Bayes Equivariant Estimators.

4.3.,1 Normal Priors.

Suppose that Xysees ,"xN are priorly independent and identically
distributed (i.i.d.) normal variables with prior mean Ko and prior
variance crg. - consists of all such distributions with -» < Hy <o
and 0 < cg < . Under this model the sample statistios x, and 'c‘ri

are independent of T2 and =X . The Bayes equivariant estimation is
N=n X'l\T-n

A2

(4.9) Oap (5 = 857 + (- DG

n 2
. } o+ ﬁE{VN-n’En}]} .

lu
=I"~1

We now show that Wl%r-n and Von 2T independent of Yo Indeed, by
' * . - A .
the Bayes model x, and XN, 2re independent. Hence »(Xn,an,gn) is
independent of ;\cﬁ_n. Furthermore, (}?ngg'n) is a complete sufficient
statistic for the subfamily of prior distributions of X Hence, from

Basu's theorem (Basu, [1]) u, is independent of (§§_n,§n,3n). Finally,

*® -
since E{\?-n is a function of . (}Acw_n,xn,a'n), u, and Elile-n are inde-

pendent. Hence,
(4.10) E{Wl%l—nh}n} - E{w2 } =2, Nn-l E{(F[N-n-1,n-1]} = =~ . N-n-1

N-n N-n n-1 n-3  N-n °

Similarly,

11



. . 2 2 N
(b.11) Elvynlt) = B0y ) = sy

Substituting these results in (4.9) we obtain as the Bayes equivariant

estimator
“ A2 A2 3 3
(k.12) Cop&n) =0, - A+ =)

which, in large populations is close to =@ 1 ‘(xi'-:?)g/(n-B).
1=
It is well known (see Zacks [17; pp. 346}) that the minimum mean-
squared-error equivariant estimator of cg in the i.i.d. case is
Z:?zl.(xi-E)g/(n+l). On the other hand, if the loss function is the
i A 22k N i .
gquadratic loss (e-co) /Un the best equivariant estimator is

Z:?=l.(xia§)2/(n-3). This confirms the above result.

4.3.2 Exponential Priors

Suppose that Xl""’XN are priorly i.i.d., with a common exponen-
- 2 2
tial distribution, with mean Ho (the prior variance is 0y = po). It

is shown in [16] that the Bayes equivariant estimator is

f2(u )n
(4.13) bar = St 0-B) sy 1 0@

where f(gn) = -min(ul,...,un). Thus, in contrast to the normal case,
in the exponential priors model the Bayes equivariant estimator depends

on , too.

12



5. Bayes Risk Efficiency.

In the present section we inbtroduce an index of Bayesian efficiency

of estimators of cﬁ. Given a prior distribution, H(§N), we denote by

R(GE,H) the prior risk function of an estimator A° under H. In the
present section we consider squared-error loss, (32-03)2, only.
Generalization to quadratic‘loss functions can be readily attained.
Since the minimal prior risk is attained by the Bayes estimator Gi,

with proper prior parameters Hos 02 we define the prior

O’

. s s . A2
relative efficiency of an estimator G~ as

R(3‘2B,H )

R(4%,H)

(5.1) RE(5°,1) =

For any estimator, O S_REG}Q,H) < 1.

5.1 Exponential Priors-Example.

We provide now a numerical example of estimating the variance of
a small population, N = 100, when the population variates are priorly
i.i.d. exponential random variables with expectation by = 10. The sample
size is n = 10. 1In Table 1 we present the values of‘the classical and
the Bayes estimators determined by 50 independent simulation runs. In
each case we give also the value of U;. We see that generally the

Bayes estimator is closer to the population variance. The prior relative

562
efficiency of 3i against 3% is estimated to be RE = .122. Note R(cn)

and ﬁ(&g) are the sample estimates of the prior mean-squared-errors

13



EH[(cr -C ) } and EH{(c'\rg-O‘I%I)g}, respectively. We see in this example
that the classical sample variance is very inefficient compared to the
Bayes estimator. In the following example we show some analytical

comparisons for the normal case.

5.2 Normal Priors.

The prior relative efficiency index (5.1) can be expressed also

in the form

A2 A2 \2
N { (6" =c ) } o
(5.2) RE(6%,H) = [1 + EHEH{PVR} ]

A
where PVR is the posterior variance of the Bayes estimator O‘2B. In

the case of prior i.i.d. normal (p.o, Ug) variables, one obtains

20'4

(5.5) E(PVR(H,%,)) = > (1-£)(1 -3(1-1)) ,

where f = n/N. Consider the sample variance 3?1 Due to the‘prior
- 2
independence of X, and /&n we obtain

2

(5.4) E([ #1)

8 - B8 - a-Dia-d)+ B E

- (l-f)ecrg E{[% ng_[n-l]-(l -%) -1% x§[1]]‘2} ,

2
where Xl[n-l] and Xg[l] designate independent chi-squared r.v.'s.

From (5.3) and (5.4), the prier relative efficiency of 0121, relative

1k



Table 1.

|

O 00— OVUT =W [

50 Independent Simulation Runs of Exponential Populations

of Size N = .100.
of Size n = 10.

)

11.0279
25,9047
163.197k
114.8876
48.5473
24,1673
233.9413
2h,2149
36.0928
58.1589
82.4155
110.1057
30.7288
92.7353
14.1656
30.6368
75.h2ok
123,1242
34,9740
226.5559
16.9147
98.5459
48.8585
54.3939
52.1598
55.5302
171.1030
105.0818
17.5409
23.1610
116.6341
27.0976
69.4181
20.7325
191.2939
199. 9331
85.3183
17.2250
218.7134
30.0034
34,1185
32,7168
50.9459
41,4210
36,6681

22.932%
41.4523
149.5766
19,2172
6k, 9260

Variance Estimates are

55)

91.3822
93.53%83
108.4712
102. 4455
96.1006
92.6005
115.0390
92.8096
93.7894
95,8768
98.2541
101.4133
9k.2891
99.3392
92.9971
93.1324
97.7225
102, 9664
95.1125
116.6118
92.2562
100.9711
ok, Oh72
95.4909
95.2457
95.6501
107.1958
100.6807
92. 9367
PB.2519
101.8029
9k.1436
98.1458
93,0247
112.5688
110.6755
96.55T7h
95.0543
112.1939
93.1121
9. 4987
93 . 6423
95.3254
9k, 8028
ok,1386
93 . 6664
9k.1h52
106.0161
101.9416
96.6517

ofy (1)

59.3401
99.7939
117.9033
112.7694
140.4537
95.378L
110.2580
73.1228
88.0842
92.6123
100. 8301
82.7390
82.7665
66.7146
100.5613
87.0248
74,1037
10k4.8201
86.49k2
118.4538
134.9088
72.2479
134,9985
11k, 8043
158.8236
79.0303
87.0796

128,0554

95,6511
ok, 2407
118.2461
Th.1948
101.3439
08.1385
121.3687
105.3757
67.8614

" T7.5798

108.5281
83.3298
80.7266

106.1845
77.0860
bh.2112
75.0202
88.6936
64,5216
99,7121

79.8605
60.5816

Based on Sample

ﬁ(&i) ~ 3887.67
ﬁ‘(&i ) = 474,90

RE(Gi,H) = .12216

15



to the prior normal distributions is:

- 2 -
N(l-f)[N—Z + (1-%')2 - Q-5

(5.5) RE(SS,H) = (1 +
2(1 - §(1-2))

The relative efficiency function is independent of the prior
parameters, since % is a scale parameter of the distribution. We
therefore provide in the following table some relative efficiency values

as functions of the sample fraction f and the population size, N.

Table 2. The Prior Relative Efficiency of {J"i.

M\f; 0.10 0.25 0.50 0.75

100. | 0.11% 0.310 0.666 0,921
200. | 0,112 0.309 0.666 0.922
300. | 0.111 0.308 0.666 0,922
4oo., | 0.111 0.308 0.666 0.922
500. { 0.111 0.308 0.666 0.923
660. | 0.111 0.308 0.666 0.923
700. | 0.111 0.308 0.667 0.993
800. | 0.110 0.308 0.667 0.925
00. | 0.110 0.308 0.667 0.923
1000. | 0.110 0.308 0.667 0.923

From Table 2 the prior relative efficiency of Gi is almost independent of

the population size N and is somewhat greater than the sample fraction,

f. These numerical results show the extent of possible improvement in

estimation if good information is available on the prior distribution.

16



In order to analyze the extent of errors in the prior assumptions concerning

the values of p, and o, we derive, on the basis of (5.2), the prior

relative efficiencies of 32 (x_), under (u.,0.). It is a straight-
“l’cl ~n 0770
forward matter to show that the prior relative efficiency of 32 - (xn
. l,l"‘
is

2
5.6 o N(1L£)[ (p-l4262) 4he? 2
5. RE (o

H',H) =[1 +

2(1-F (1-1))

where p = oi/cg and & = (ul-uo)/co.

In Table 3 we present the prior relative efficiency of the Bayes estimator
’&fi, (§n) as a function of f, & and A=p-l, where H' is the N(wl,O“]g_) distribution.
We see that the magnitude of ® is not so important, but deviations from %
larger in magnitude than 10 percent reduce the prior relative efficiency
below that of Gi. In Table % we provide these prior relative efficiency
values for values of A between =7.5% to 7.5% . We see that in this
range the Bayes estimator is considerably more efficient than the classichl

sample variance.

17



Table 3. The Prior Relative Efficiency of Gﬁ'(§n)’ N=1,000

Sample Fraction = .10

g4 -.30 =620 -.10  0.00 0,10 0.20  0.30
-.50 0.028 0.067 0.279 O0.754 0.124 0.042 0.021
-.40 0,027 0.061 0.238 0.874 0.141 0.045 0,022
-.30 0.026 0,057 0.211 0.950 157 0.048  0.023
-.20 0,025 0,055 0.19% 0.986 170 0.051  0.023
-.10 0.02h 0.053 0.185 0.998 179 0.052 0.024

.00 0.024% 0.053 0.182 1,000 .18  0.053  0.02k
0,10 0.024 0.053 0.135 0.998 179 0.052 0.024
0.20 0.025 0.055 0.19% 0.986 170  0.051 0.023
0.30  0.026 0.057 0.211 0.950 157  0.048  0.023
0.40 0.027 0.061 0.238 0.874 41 0,045  0.022
0.50 0,028 0.067 0.279 0.75k Jd2h 0,042  0.021

oleoNoNoNoNoNONONS)

Sample Fraction = .25

s\M -.30 -.20 -.10 0,00 0,10 0.20  0.30
~.50 0.0k5 0,122 0.617 0.391 0,091 0.037 0.020
-.k0 0,038 0.09% 0.415 0.602 0,119 0.04% 0.023
-.30 0.033 0.078 0.30k 0.87 0,150 0.051 0,025
-.20 0,031 0,069 0.247 0.950 0.180 0,057 0.027
-.10 0.029 0,064 0.219 0.99% 0.202 0.061 0.028

.00  0.029 0.062 0.210 1.000 0.210 ° 0.062  0.029
0.10 0.029 0,064 0.219 0.99% 0.202 0.061 0,028
0.20 0.031 0.069 0.247 0.950 0.180 0.057 0,027
0.30 0.033 0.078 0.304% 0.817 0.150 0.051 0.025
0.40 0.038 0.09% 0.415 0.602 0.119 0.04k 0,023
0.50 0.045 0.122 0.617 0.391 0,091 0.037 0.020

Sample Fraction = .50

S\M -.30 20 ~.10 0.00 0.10 0.20 0.30
~.50 0.114 0.395 0.780 0.199 0.073 0.036 0.022
-.40 0.076 0.21k 0.847 0.373 0.109 0.048 0.027
-.30 0.058 0.1k 0.555 0.645 0.159 0.062 0.032
-.20 0.048 0.110 0,38 0.893 0.216 0.076 0.038

-.10 0.04k 0,095 0.307 0.989 0.266 0.087 0.041

.00  0.043 0,091 0.286 1.000 0.286 0,091 0,043
0.10 0.0k  0.095 0.307 0.989 0.266 0.087 0.0L41
0.20 0.048 0.110 0.382 0.8935 0.216 0.076 0.038
0.30 0.058 0,142 0.555 0.645 0.159 0.062 0.032
0.40 0.076 0.21% 0.847 0.373 0.109 0.048 0.027
0.50 0.11k 0.395 0.780 0.199 0.073 0.036 0.022
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Table 4. Prior Relative Efficiency of GE,Qﬁn), N=1,000.

Sample Fraction = .10

8\  =.075 =.050 =.025 0,000 0.025 0.050 0.075
-.50 0.461 0.754% 0.957 0.75% 0.461 0.279 0.180
-.40 0.385 0.645 0.939 0.87hk 0.560 0.334 0.210
-30 0.336 0.564 0.88% 0.950 0.651 0.387 0.238
-.20 0.305 0.510 0.829 0.98 0.722 0.431 0.262
-.10 0.288 0.480 0.793 0.998 0.766 0.460 0,278
-.00 0.28% 0.470 0.780 1.000 0.780 0.k70 0.28%
0.10 0,288 0.480 0.793 0.998 0.766 0.460 0.278
0.20 0,305 0.510 0.829 0.98 0.722 0.431 0.262
0.30 0.336 0.564 0.88% 0.950 0.651 0.387 0.238
0.%0 0.385 0.645 0.939 0.874 0.560 0.334 0.210
0.50 0.461 0.754% 0.957 0.754 0.461 0.279 0.180
Sample Fraction = .25
a\X  -.075 .050 =,025 0,000 0.025 0.050 0.075

-.50 0.868 0.868 0.617 0.391 0.252 0,171 0.122
-.40 0.658 0.911 0.87F 0.602 0.378 0.244  0.166
-.30  0.48k 0.759 0.965 0.817 0.532 0.333 0.217
-.20 0.385 0.619 0.910 0.950 0.678 0.423 0.268
-.10 0.336 0.540 0.8%38 0.99% 0.777 0.491  0.307
-.00 0.321 0.516 0.810 1.000 0.810 0.516 0.321
0.10 0.336 0.540 0.888 0.99% 0.777 0.k91 0.307
0.20 0,385 0.619 0.910 0.950 0.678 0.423 0.268
0.30 0.484% 0.759 0.95 0.817 0.523 0.333 0.217
0.40 0.658 0.911 0.874 0.602 0.378 0.244 0.166
0.50 0.868 0.868 0,617 0.391 0.252 0.171 0.122

Sample Fraction = .50

\L  =.075 =.050 0.025 0,000 0.025 0.050 0.075
-.50 0.571 0.395 0.276 0,199 0.148 0.114% 0.09
-40  0.921 0.766 0.544% 0.373 0.261 0.188 0.1h41
-.30  0.787 0.951 0.873 0.645 0.440 0.303 0.215
-.20 0.573 0.803 0.974 0.893 0.655 0.445 0.305
-.10 0.448 0.662 0.905 0.989 0.813 0.568 0.384
-v00 0.415 0.615 0.865 1.000 0.863 0.615 0.hi5
0.10 0,448 0.662 0.905 0.989 0.813 0.568 0.384
0.20 0.565 0.803 0.97% 0.893 0.655 0,445 0,305
0.30 0.787 0.951 0.873 0.645 0,440 0.303 0.214
0.40 0.921 0.766 0.544% 0.373 0.261 0.188 0,1h1"
0.50 0.571 0.395 0.276 0.199 0.148 0.114% 0.09
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